
October, 2001

Advisor Answers

Search through a whole project

VFP 7.0/6.0

Q: I am often interested in searching all the source code in a VFP
project for a certain text string (a file or procedure name, for

example). I am not sure how to do this. I know how to search the
source of a particular module, but I'm not sure how I can search every

module in the project.

–Scott Mabey (via Advisor.COM)

A: There's no built-in way to search for a string in an entire VFP
project. You can search in a particular file using the Edit-Find menu

item (or its corresponding shortcut, Ctrl+F). When you search in a
form or class, choosing All objects as the Scope of the search ensures

that you search in every method. (One caveat: when more than one
method editing window is open, a search omits the methods shown in

editing windows other than the one that started the search.)

In VFP 7, the Find dialog has been enhanced to allow wildcard
searching. (See the "Find Dialog Box" topic in Help for details.) VFP 7

also allows you to search without bringing up the Find dialog. Highlight
some text and press Ctrl+F3 to search for the next occurrence of the

highlighted text. Ctrl+Shift+F3 searches backwards for the highlighted
text.

The Filer utility provided with VFP (in the Tools\Filer directory) lets you
search for files with a specified name or containing up to three

specified text strings in a directory and its subdirectories. But the Edit
button in Filer brings up the file as text, not in its native tool. In

addition, projects don't require all files to be in a single directory tree.

Fortunately, VFP's open architecture lets us build our own project

search tools. In VFP 6 and later, a project is accessible as a COM
object, which makes it easy to access every file in the project. In

earlier versions, you can search through the project table, since a .PJX

file is just a .DBF with a special extension. The actual files that contain
code are either text files (.PRG, .H) or are tables with special

extensions (.VCX, .SCX, .MNX). VFP has excellent string handling

capabilities, so once we get our hands on a piece of code, it's easy to

see whether it contains the search string.

I put all this together and wrote a rudimentary project search tool for

VFP 6 and later. It's a class called cusProjectSearch, based on the
Custom class (and is available on this month's Professional Resource

CD). The class has four custom properties:

 aMatches – an array containing the matches from the most

recent search
 cSearchString – the string to search for

 nMatchCount – the number of matches in the most recent search
 oProject – an object reference to the project to search

It has quite a few custom methods, but the key method is Search. You
call Search, optionally passing a search string and a project. You can

pass the project using an object reference or its name. Here's the key
code for the Search method. A lot of error-handling code is omitted

here for space reasons (but is included in the version of the class on

the PRD):

LPARAMETERS cSearchString, uProject
 * cSearchString = the string to search for. (Optional)
 * uProject = project to search. Can be either
 * object reference, in which case the
 * project must already be open, or
 * filename with path, in which case the
 * project is opened, then closed. (Optional)

LOCAL lWasOpen

* Check parameters and set up search
DO CASE
CASE VARTYPE(m.cSearchString) = "C"
 This.csearchstring = m.cSearchString
ENDCASE

DO CASE
CASE VARTYPE(m.uProject) = "O"
 * Check object type, then proceed
 IF UPPER(m.uProject.BaseClass) = "PROJECT"
 This.oProject = m.uProject
 lWasOpen = .T.
 ENDIF

CASE VARTYPE(m.uProject) = "C"
 * Is the project already open?
 IF TYPE("_VFP.Projects['" + ;
 FORCEEXT(JUSTFNAME(m.uProject),"PJX") + "']") = "O"
 This.oProject = _VFP.Projects[;
 FORCEEXT(JUSTFNAME(m.uProject),"PJX")]

 lWasOpen = .T.
 ELSE
 * Make sure file exists. If so, open it.
 IF FILE(m.uProject)
 MODIFY PROJECT (m.uProject) NOSHOW NOWAIT
 This.oproject = _VFP.ActiveProject
 lWasOpen = .F.
 ENDIF

ENDCASE

* If we get this far, we have a valid string and project.
* Now go through all files and check each one.
LOCAL oFile

This.nMatchcount = 0
FOR EACH oFile IN This.oproject.Files
 This.SearchFile(oFile)
ENDFOR

IF NOT lWasOpen
 This.oproject.Close()
ENDIF

RETURN This.nmatchcount

This code checks the parameters, and if they pass muster, stores them

to the appropriate properties. If the parameters are omitted, but the
properties are already set, that's acceptable. If anything goes wrong in

this process, an appropriate error is fired, so that the error handler can

deal with it. (However, this simple class doesn't actually have an error
handler, so VFP's default error handler gets called.)

If all the tests pass, the method loops through the files in the project
and calls the SearchFile method for each. Finally, if the project was

opened in this method, it's closed. The method returns the number of
matches found.

The SearchFile method has a simple role. It determines the type of
each file and calls an appropriate method to process it. Here's the

code:

* Search a single file for the search string.
LPARAMETERS oFile

WITH oFile
 * Find out what kind of file we have
 DO CASE
 CASE INLIST(.Type, "P", "Q", "T")
 This.SearchProgram(oFile)
 CASE INLIST(.Type, "K", "V")
 This.SearchMethods(oFile)

 CASE INLIST(.Type, "M")
 This.SearchMenu(oFile)
 CASE INLIST(.Type, "d")
 This.SearchStoredProcs(oFile)
 CASE INLIST(.Type, "R", "B")
 This.SearchOutput(oFile)
 OTHERWISE
 * Nothing to search
 ENDCASE
ENDWITH

RETURN

The various SearchX methods dig into the files. They're all fairly
similar. Here's the key processing loop for SearchMethods. Before it

gets to this point, the method opens the VCX as a table with an alias
of __SearchFile.

* Check each record for code
SCAN
 IF NOT EMPTY(Methods)
 This.SearchField(Methods, .T., oFile.Name, ;
 ObjName, .T.)
 ENDIF
ENDSCAN

SearchMethods opens the file as a table and looks at the Methods field

of each record. If it contains anything, that code is passed to the
SearchField method, which is the real workhorse of the class:

* Search for the specified string in a single
* field of one of the "X" files (VCX, SCX, FRX, ...)
LPARAMETERS cContents, lGetProcName, cFileName, ;
 cObjName, lDropNameLine
 * cContents = Field contents to be searched
 * lGetProcName = Should we search for the name of the
 * procedure containing the search
 * string?
 * cFileName = Name of the file name containing
 * cContents
 * cObjName = Name of the particular object containing
 * cContents
 * lDropNameLine = Does cContents contain method code,
 * where the "PROCEDURE" line is only
 * implied? If so, line numbers must
 * be adjusted to omit that line.

LOCAL nMatchPos, nMatchCount, aCodeByLines[1]
LOCAL nReturnCount, nProcLine, nCodeLine, cCodeLine
LOCAL cProcName, nParmsBegin, cFirstWord

* Break code into lines
ALINES(aCodeByLines, cContents)

* Find first match
nMatchCount = 0
nMatchPos = AT(This.cSearchString, cContents)

DO WHILE nMatchPos <> 0
 nMatchCount = nMatchCount + 1
 * Figure out which line contains the match
 nReturnCount = OCCURS(CHR(13), ;
 LEFT(cContents, nMatchPos - 1))
 nCodeLine = nReturnCount + 1

 IF lGetProcName
 * Search backward for procedure name
 * starting from current line
 nProcLine = nCodeLine
 * Get rid of tabs and leading spaces
 cCodeLine = LTRIM(CHRTRAN(;
 aCodeByLines[nProcLine], CHR(9), " "))

 nHeaderEnds = AT(" ", cCodeLine)
 cFirstWord = UPPER(LEFT(cCodeLine, ;
 IIF(nHeaderEnds=0, LEN(cCodeLine), ;
 nHeaderEnds -1)))
 DO WHILE ("PROCEDURE" <> cFirstWord ;
 AND "FUNCTION" <> cFirstWord) ;
 OR EMPTY(cFirstWord)
 nProcLine = nProcLine - 1
 cCodeLine = LTRIM(STRTRAN(;
 aCodeByLines[nProcLine], CHR(9), " "))
 nHeaderEnds = AT(" ", cCodeLine)
 cFirstWord = UPPER(LEFT(cCodeLine, ;
 IIF(nHeaderEnds=0, LEN(cCodeLine), ;
 nHeaderEnds -1)))
 ENDDO

 cProcName = ALLTRIM(SUBSTR(;
 aCodeByLines[nProcLine], nHeaderEnds + 1))
 nParmsBegin = AT("(", cProcName)
 IF nParmsBegin <> 0
 cProcName = ALLTRIM(LEFT(cProcName, ;
 nParmsBegin - 1))
 ENDIF

 * Compute code line within procedure
 nCodeLine = nCodeLine - nProcLine + 1
 IF lDropNameLine
 nCodeLine = nCodeLine - 1
 ENDIF
 ELSE
 cProcName = ""
 ENDIF

 This.AddMatch(cFileName, cObjName, ;
 cProcName, nCodeLine)

 * Now find next match
 nMatchPos = AT(This.csearchstring, cContents, ;
 nMatchCount + 1)
ENDDO

RETURN

SearchField looks for the search string in the code. Then, the method

searches backward from the line containing the search string to find
the beginning of the containing method. The AddMatch method is

called to store the information in the aMatches array. That method is
quite simple, so I won't show it here.

In VFP 7, the new EditSource() function makes it easy to open a file at
a particular line. To demonstrate the technique, the class has a very

basic OpenMatches method that just runs through the aMatches array,
opening each file. Because it doesn't check whether the file is already

open, each method is positioned at the last match it contains.

This project search class is really meant as a proof of concept. It has

no user interface and doesn't address many of the issues you'd want,
such as case-sensitivity, full word matches vs. contained strings, and

so forth.

Fortunately, someone else has already done the hard job of getting all

those things to work. Steve Dingle has created a public domain tool for

searching in a project. It handles all these issues, has an intuitive user
interface, and is configurable. He's currently working on making the

tool's search capabilities available programmatically. The current
version of Project Search is included on this month's PRD.

So, while the short answer to your question is "you can't do that," the
true answer is that once again, VFP's extensibility and open

architecture make it possible to go far beyond what's built into other
tools.

–Tamar

